

CENTER FOR EARTH SYSTEM SCIENCES AND REMOTE SENSING TECHNOLOGIES

The City College of New York

Its Getting Hot In Here!

Utilizing an Improved Analysis from the NYC Micronet to Monitor, Forecast and Communicate Extreme Temperatures Across New York City

Dimitri T. Ambroise

NOAA EPP/MSI CESSRST Graduate Scholar Sustainability in the Urban Environment | CUNY City College of New York New York, NY USA

CESSRST Advisor(s) Name(s): **Dr. Tarendra Lakhankar** | NOAA CESSRST, CUNY City College of New York, New York, NY, USA NOAA/NERTO Mentor(s) Name(s): **Dr. Jordan Gerth** | NOAA/National Weather Service Silver Spring, Maryland, USA **Dr. David Radell** | NOAA/National Weather Service New York/Upton, NY, USA **Dr. Nicholas Bassill** | Center of Excellence/NYS Micronet SUNY/University at Albany Albany, NY, USA

Agenda

- Introduction
- Mesonet Data
- Satellite Data
- Socioeconomic Indicators in New York City
- Conclusion
- Future Works / Career Goals
- Thanks & Acknowledgements

Future

Introduction

Bio: Haitian-American from Brooklyn, NY, USA **Education**:

- SUNY Alfred State, Electrical Engineering Tech, A.A.S
- CUNY City Tech, Computer Engineering Tech, B.Tech.
- Pursuing M.S. in Sustainability in the Urban Environment
- NOAA's mission alignments:
 - Weather Ready Nation
 - Understand & predict changes in climate, weather, ocean and coasts
 - Share knowledge and information with others

Professional Development Activities

- Shadowing at NWS National Operations Center Silver Spring, MD
- Shadowing at NCEP/WPC College Park, MD
- Professional development meeting with federal employees/contractors
- Scheduled professional development seminars

Introduction	Mesonet	Satellite	Socioeconomic	Conclusion	Future	Thanks
--------------	---------	-----------	---------------	------------	--------	--------

NERTO Research Summary: Its Getting Hot in Here!!

Mesonet

Future

Micronet Wet Bulb Globe Temp Calculations

For outdoors with a solar load, WBGT is calculated as

WBGT = 0.7NWB + 0.2GT + 0.1DB

- where: WBGT = Wet Bulb Globe Temperature Index
 - Tn = NWB = Nature Wet-Bulb Temperature
 - Ta = DB = Dry-Bulb Temperature
 - Tg = GT = Globe Temperature

Satellite

Future

Micronet Wet Bulb Globe Temp Calculations

	station	date_time	air_temp_c	WBGT_C	air_temp_c	WBGT_C	air_temp_c	WBGT_C
1326	QNLICI	2021-06-05 14:30:00	26.40	44.938048	26.40	32.188014	26.40	26.836880
1328	QNLICI	2021-06-05 14:40:00	26.88	45.780281	26.88	32.925534	26.88	27.013424
1329	QNLICI	2021-06-05 14:45:00	26.77	45.159719	26.77	32.555663	26.77	27.040218
1330	QNLICI	2021-06-05 14:50:00	26.75	45.224897	26.75	32.650760	26.75	26.912358
1331	QNLICI	2021-06-05 14:55:00	26.86	45.512376	26.86	32.823791	26.86	26.992067
26492	QNLICI	2021-08-31 23:40:00	27.55	39.981450	27.55	29.727667	27.55	29.727667
Micro	onet Data I	Date Timestamps	Fi	g 1	F	ig 2	Fig	3

Fig 1: Calculating WBGT: Wetbulb formula suggested by Dr. Vincent E. Dimiceli & Steven F. Piltz; Zenith angle 90° Fig 2: Calculating WBGT: Wetbulb formula suggested by Sean Heuser ; Zenith angle 90° +-----Fig 3: Calculating WBGT: Wetbulb formula suggested by Sean Heuser ; Zenith angle 89.9506° +-----

&

CAVE

Future

Example of AWIPS via the CAVE application

Initial Real Time Land Surface Temperature Observations, NYC

LST observation pull for Jul 12, 2022 focused on NYC temperature range (-40°F - 140°F rainbow-scale)

LST observation pull for Jul 12, 2022 with interpolation to highlight Heat Index temperature range (80°F - 120°F in red) focused on NYC Satellite

Future

Thanks

Annual Archived Land Surface Temperature Observations, NYC

LST observation pull for Aug 15, 2018 focused on NYC Heat Index temperature range (80°F - 120°F in red gradient) LST observation pull for Aug 15, 2019 focused on NYC Heat Index temperature range (80°F - 120°F in red gradient) Satellite

Future

Thanks

Annual Archived Land Surface Temperature Observations, US CONUS

LST observation pull for Aug 15, 2020 focused on CONUS Heat Index temperature range (80°F - 120°F in red gradient) LST observation pull for Aug 15, 2021 focused on NYC Heat Index temperature range (80°F - 120°F in red gradient)

Observations

Aug 7th 2022, 1500z (11am EST)

Aug 7th 2022, 1700z (1pm EST)

Aug 7th 2022, 2100z (5pm EST)

Future

Thanks

Aug 7th 2022, 1500z (11am EST)

Aug 7th 2022, 1700z (1pm EST)

Aug 7th 2022, 2100z (5pm EST)

Future

NYC Real-Time Temperature [C] Observations

Aug 7th 2022, 1500z (11am EST)

Aug 7th 2022, 1700z (1pm EST)

Aug 7th 2022, 2100z (5pm EST)

Socioeconomi	c Conclusion	Future	Thanks
--------------	--------------	--------	--------

Heat Wave Social and Socioeconomic Indicators

NYC Heat Vulnerability Index

NYC Hot Surface Temperatures

NYC Hot Surface Temperatures

NYC Hot Surface Temperatures

NYC Race and Ethnic Profile

Jamaica /Hollis/

East New York/ Stuyvesant/ Williamsburg,

Future

NERTO Research Summary: Conclusions

- Heat Waves have the capacity to increase in frequency and intensity
- The individuals most likely to be affected:
 - Young / Elderly
 - Minority
 - Medically Disabled
 - Low Income
- The individuals least likely to be affected:
 - Working Age
 - White / White-Passing Individuals
 - Able Bodied
 - Wealthy/ Affluent
- More vegetative cover in the high risk neighborhoods have the capacity to lead to reduced surface temperatures

Future Works

- Complete Data Cleaning
 - Verify WBGT Accuracy for Micronet
 - Calculate WBGT for RTMA Data
 - Automate Zenith Angle calculation
- Effect of wind direction over land and water, is transplanting or transferring heat
- Effect of bodies of water, is it cooling or heating
- Combine/correlate Micronet data with satellite data
- More extensive social impact research
 - Income/ wealth distribution Percent of persons 65+ living independently
 - Crime rates
 - Language Barrier

- - Concentration of NYCHA buildings
 - Design of windows to allow AC Install
 - Local hospital locations

Future Professional and Career Goals

- M.S. Graduation Winter 2022/23
- Continue to expand on active NOAA related projects
- Publish a guide for beginner Data Scientists
- Apply to Physical Scientist positions with NOAA
- Possible grant proposal to conduct field research in the Caribbean

Thanks & Acknowledgements

- Mentors:
 - CESSRST Advisor: Dr. Tarendra Lakhankar
 - NOAA/NERTO Mentor(s): Dr. Jordan Gerth, Dr. Dave Radell, Dr. Nick Bassill
- Python Advisors:
 - Emanuella Igwe, NOAA TOWR-S Team
 - Salman Aslam, NOAA TOWR-S Team
 - Javier A. Villegas Bravo, NOAA Weather and Ocean Prediction Centers
 - Dr. Greg Carbin, NWS Forecast Operations Branch Chief
- Shadow Leaders/Participants:
 - Brian Montgomery |, Alex Lamers| NOAA/NWS NCEP WPC, Dr. Ashton Robinson | NOAA NWS WPC, Dr. Jose Galvez | WPC International Desk, Dr. Alima Diawoula | WPC International Desk,
- AWIPS Advisors:
 - Lee A. Byerle | NOAA TOWR-S Team
 - Kashaud Bowman | NOAA TOWR-S Team

NOAA EPP/MSI CESSRST Acknowledgement

This study is supported and monitored by The National Oceanic and Atmospheric Administration – Cooperative Science Center for Earth System Sciences and Remote Sensing Technologies (NOAA-CESSRST) under the Cooperative Agreement Grant #: NA16SEC4810008. The authors would like to thank NOAA Educational Partnership Program with Minority Serving Institutions for fellowship support for <u>Dimitri T. Ambroise</u> and NOAA CESSRST. The statements contained within the manuscript/research article/poster are not the opinions of the funding agency or the U.S. government, but reflect the author's opinions.

Thank You!

Dimitri T. Ambroise

Dambroi000@citymail.cuny.edu Dtambroise94@gmail.com linkedin.com/in/dimitriambroise

Any Questions?